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Dynamical Systems with N degrees of freedom can be reduced, by the method of 
surfaces of section, to the study of a (2N - 2) dimensional mapping. We consider here, 
as a model problem, the mapping given, for N = 3, by the following equations: 

1 

x1 = x,, + a, sin (x,, + r3 + b sin (x0 + ya + z0 + td 

T Yl = x0 + Yll (mod 2~) 
z1 = z. + a, sin (zO + t,) + b sin (.x0 + y, + zD + t,) 
t, = ZIJ + f, 

The purpose of the present paper is to test numerical methods for the study of the 
stochasticity of this dynamical system. Therefore, we study the two largest eigenvalues- 
in absolute magnitude-of the tangential linear mapping of Tn. We then meet im- 
portant precision problems on the computer, and use both a standard method with 
multiprecision computations and an entirely new one. The method enables us to show 
numerically that the mapping T is indeed close to a C-system, in the ergodic zone. 
This method can be generalized easily to systems with a small number N of degrees of 
freedom, and becomes then a numerical tool for the study of the stochasticity of such 
dynamical systems. 

I. INTRODUCTION 

Many studies have been made these last few years on the motion of a star in 
an axisymmetric galaxy or in the plane of symmetry of a spiral galaxy [4, lo]. 
This is an instance of a dynamical system with two degrees of freedom. The 
present study can be related to the study of a motion of a star in a galaxy without 
any symmetry. In fact, we study dynamical systems with three degrees of freedom, 
and more especially the ergodic properties of such systems. It will also be shown 
that an extension of this study to systems with a larger number of degrees of 
freedom (N = 4, 5, 6...) is possible. These systems are not purely ergodic, but 
are close to integrable systems. The work of Arnold [3] and Moser [9] has 
shown that they are, if certain conditions are satisfied, behaving like the integrable 
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case in certain regions of the phase space. However, the stochastic properties, in 
the nonintegrable case, are unknown. 

One of the most fruitful methods for studying numerically such systems is 
the use of “surfaces of section.” If we consider, quite generally, a conservative 
system with N degrees of freedom, the corresponding phase space has 2 N dimen- 
sions and a given trajectory must lie on a manifold with 2N - 1 dimensions, 
corresponding to a given value of energy. In this manifold, we define a “surface 
of section” as a given manifold with M = 2N - 2 dimensions, and we consider 
the successive intersections of the trajectory with this surface of section. It is 
useful to define a mapping T of the surface of section on itself and to study such 
a mapping as a model problem, as it lends itself very well to numerical experiments. 

In a previous paper [6], Froeschle studied some ergodic properties of a two- 
dimensional mapping T, and the variation with the number n of iterations, of the 
largest eigenvalue Xrs (in absolute magnitude) of the tangential linear mapping 
Tn*. He found that the numerical results seem to follow the general behavior of 
the C-systems, which are dynamical systems with special stochastic properties. 

We reproduce here the definition of the C-systems given by Arnold and Avez [I]. 
Let 4 be a diffeomorphism of the class C2 of a compact connex Riemannian 
manifold M of the class C”. Let y* be the linear tangential mapping of 4 from 
TM, mto TM,(,) where TM, and TM,(,, are the tangential spaces to m and 
4(m). Then we say that 4 is a C-diffeomorphism if: 

(1) TM, is the direct sum of two tangential spaces X, and Y, of positive 
dimension, i.e., TM, = X, @ Y, . 

(2) for all i 

II(Y)* 5 II 3 a ehi II f II, ll(9-“I*511 ~~e-Aill~ll if TV&, 
and 

II(Y)* 5 II G b hi II t IL Mb-“>* 5 II b a ehi II 5 II if t E Y,, 

where the positive constants a, b, h do not depend on i and 5. By I/[ /I we mean 
the length of the vector .$. For example, on the torus M = {x, v} (mod 1) with 
the Riemannian metric ds2 = dx2 + dy2 we consider the mapping: 

Then the above definition holds with: 

a=b=l, 
ea = A, , 

f+ = X 
23 
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h, and X, being the eigenvalues such that 0 < h, < 1 < X, . Therefore this 
mapping is a C-diffeomorphism. 

The same quantity hln has been studied, but for a four dimensional mapping 
which has been taken as a model problem for the study of a dynamical system 
with three degrees of freedom [7]. For such systems, it is also necessary to study 
the variation of the second eigenvalue hzn, in decreasing absolute magnitude, of 
the tangential linear mapping. Froeschle studied only the behavior of the first 
eigenvalue, as he met important numerical problems, due in particular to the 
limited number of significant digits on the computer, and due also to the method 
used. 

Our purpose, in this paper, is to present two methods for this study. These 
methods have been tested on the Nice Observatory IBM 7040 computer (basic 
cycle = 8 p set; 32 K words of memory; 8 significant digits in floating point 
simple precision). In Section II, we give the equations of the mapping, we recall 
some relevant results and the problem is studied with a multiprecision program. 
In Section III, we give a new approach of the problem by a special numerical 
method, which is valid in general for systems with N degrees of freedom. In 
Section IV, the results are given. 

II. STUDY OF THE PROBLEM IN SIMPLE AND MULTIPRECISION 

A previous paper [6] has shown for a two dimensional mapping Tl that if 
Xln is the largest eigenvalue of the tangential linear mapping TT* of T,“, then the 
quantities 

hn = ml0 I hn o/n 

and the Cesaro mean pin of Bin are good estimators of stochasticity. In this 
paper we use the same quantity but for a four-dimensional mapping T, (A4 = 4). 

The mapping T of the (x, y, z, t) space over itself is defined by: 

[ x1 = x0 + al sirGo + yo) + b sir@, + Y, + z. + to) 
T .h = xo + Y, 

z1 = z. + a2 sin@, + to> + b SW, + y. + z. + to> (mod 2~) (1) 

4 = zo + to 

The determinant of the Jacobian matrix is equal to 1. This mapping has been 
suggested by Arnold [2]. If b = 0, then the mapping T is the product of two 
area-preserving mappings Tl of (x, y) on itself and T, of (z, t) on itself. These 
mappings are the inverse mappings of those given by Taylor [I 11. Each of these 
mappings displays the well-known features of systems with two degrees of freedom 
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[8]. Since the set of points obtained by repeated applications of the mapping lies 
on the torus: 

7.w = {(A Y, z, r> (mod 277)), 

escape cannot occur, and so, limit numerical investigations. 
Our desire is to establish here a property of this mapping, which will be useful 

later. Equations (1) give the inverse mapping T-l as 

x1 = x0 - a, sin( y,,) - b sin( y, t to) 

T-l y1= -xo+yot a, sin( y,) + b sin(.h f t0) 
z1 = z,, - a2 sin(t,,) - b sincy, + to> 

(mod 2Tj 
(2) 

t, = -to + z,, + a, sin(t,) -t b sine?,, -+ toI 

Let us consider the transformation S given by the equations 

Then we can verify that 

hence 

S 0 T = T-l c S, 

T-1 = S c T o s-1 

(3) 

and 
T-” z s o T” o s-1 (4) 

This relation proves that the characteristic equation of the Jacobian matrix 
L, of T” is reciprocal, by the following argument: Let Tn* be the linear tangential 
mapping of Tn. We have the relation 

T(-n)* = s o Tn” 0 s-1 (5) 

Then according to a well-known result, T(-“)* and Tn* have the same eigenvalues. 
So that if hin is an eigenvalue of T %*, then l/Xin is also an eigenvalue and the 
characteristic equation of the Jacobian matrix L,(P,,) which represents the linear 
tangential mapping T”* of T” at P,, is reciprocd (PO being the initial point). It 
will therefore be sufficient to study the behavior of just the two largest eigenvalues 
(that is largest in absolute magnitude) of the tangential linear mapping Tn*. 

We must first note that the composite mapping theorem has been used to compute 
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the Jacobian matrix L,(P,,), which represents Tn* at the initial point PO, i.e., 

Tn*(P”) = T*(T”-l(P,)) 0 T(n-l)*(PJ (6) 

Since the elements of the matrix 

L,(Po) s D s (drj ; i = 1, M; j = 1, M), 

in the studied case (ergodic case) exceed rapidly the largest floating point value 
on the computer (- 1O3s on IBM 7040), we have used the following device as 
often as necessary: if the largest eigenvalue 1 XIn i becomes larger than 102, we 
divide each term of the matrix by 102, and take: 

where m is the number of times the terms have been divided by this quantity, and 
I Xin 1 the largest eigenvalue of the new matrix. 
By using this device, we introduce in fact a “floating-point” representation of the 
numbers, which is different than that used by the computer, and which enables us to 
handle larger quantities. 
To compute 1 hIn 1 for the n-th iteration, we solve the characteristic equation 
(which is reciprocal): 

x4 + CJ3 j- C2A2 + CJ + 1 = 0 

We find numerically that the coefficients C, and C, are such that 

We obtain the approximate solutions: 

I hn I = I CI I 

/ h2n I = I c2 I/ ICI ! 

corresponding to the two largest eigenvalues. 
The two others are: 

I A,” I = l/l h2n I 

I hn I = l/l hs I 

because the characteristic equation is reciprocal. 
However, if we study the asymptotic behavior of the two largest eigenvalues, we 
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meet the following problem: L,(P,) being the matrix under study, the coefficients 
C, and C, are 

We have 

dii M Cl (of the order of C,), 

dii X di+l;,i+k M Cl”. 

If E is the relative error on the computer, the absolute error on C, is E C12. The 
absolute error on / h2n I z I C, I/l C, ~ is then E ( C, / w ~1 h,lz 1. The relative 
error on 1 h,n j is E/ h,n i/l XvL2 1. 
The results obtained for / hzn 1 will be rather bad if 1 hrn 1 > 1 X2n /. They will be 
obviously nonsignificant if the following relation holds: 

That is to say if we have in simple precision on the IBM 7040 

We set 

tp = log,, 1 hi’l / i-l,2 

Figure la shows &” and $2n versus n, for n = l(l)lOOO. We can observe that the 
two curves first go apart from each other for n increasing till 300. Then, for n > 300, 
/ hzn I becomes completely erroneous and reflects only the round-off errors due to 
1 h,% 1. We obtain 

6.0 < &” - i,b2” < 11.4 

continuously. (The relative error on the computer is Ed N lO-s.) We tried also in 
simple precision the “accelerated Rutishauser method,” for the computation of 
these eigenvalues, as described in [5] where the same phenomenon is observed. 

After translating the program to double precision, which gives us 16 significant 
digits, it appears that 

continuously. 
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Figure 1 b shows a divergence of the two curves $r” and c+&‘~ for n -< 600 and then 
a “parallelism” when n ) 600, which depends on the new relative error of the 
computer (Ed 1si lo-16). We observe that the interval on which the curves diverge is, 
when the precision is doubled, twice as large. 

FIG. 1. Eigenvalues of the four-dimensional mapping (1). Upper curve: variation of log,, ( Aln 
with n. Lower curve: variation of log,, ! hZn 1 with n. The initial conditions are: .q, = 2.0, y,, = O., 
z0 = 2.1, t, = 0. The parameters of the mapping are: a, =: -1.3, uB == - 1.3, b = 0.01. This 
corresponds to an ergodic zone. (a) Computation in simple precision (8 significant digits). (b) 
Computation in double precision (16 significant digits). 

What we want to see now is, if by using a greater precision, we continue to 
observe the phenomenon. Hardware extended precision not being available on 
the computer, we used the SHARE library multiprecision subroutines (SDA 
N” 3477-3482). 
These programs have been coded in FORTRAN IV, and are independent of the 
computer used. The characteristics of the machine (such as the number of bits 
per word, or the number of significant digits for a floating point variable or 
constant) are input parameters. The number MP of words (MP 3 3) used for a 
variable in multiprecision is also an input parameter. When working with MP 
words, the variables are represented in normalized form by an integer array of 
MP words. In the first word, we find the exponent with its sign. In the other words, 
we find the significant digits. Each of these words contains the variable sign. 
The exponent can take values from -(235 - 1) to (235 - 1). 
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We used 6 basic subroutines written in FORTRAN IV: 

ENJKPM converts a variable from single precision to multiprecision; 
EXJKPM converts a variable from multiprecision to single precision; 
SVJKPM adds two variables in multiprecision and puts their sum in a variable 

in multiprecision; 
SUJKPM subtracts two variables in multiprecision and puts their difference 

in a variable in multiprecision; 
MUJKPM multiplies two variables in multiprecision and puts their product 

in a variable in multiprecision; 
DIJKPM divides two variables in multiprecision and puts their quotient in 

a variable in multiprecision. 

Other subroutines exist for the computation of usual mathematical functions such 
as COS, SIN, EXP, LOG, SQRT, etc. 

The most important parts of our program have been rewritten in multiprecision 
with 

MP = 3, i.e., 20 significant digits, and also 
MP = 4, i.e., 30 significant digits. 

The time necessary for processing the new program with MP = 4 is rather long 
(about ten times the time necessary for double precision, that is to say one hour 
for 1000 iterations on IBM 7040), because the main loop of the program has then 
a very important number of FORTRAN instructions. We obtain for MP = 3 

and for MP = 4 

28.0 < #1" - &" < 33.4. 

Figures 2a and 2b show indeed a divergence of the two curves as soon as n = 1, 
and then again a “parallelism” which occurs for increasing values of n as the 
precision becomes greater, as expected. We must however note that the shape of 
the curves in multiprecision is not exactly the same as that observed in simple, or 
double precision. This is not very significant. Since the round-off procedures are 
not the same, slight differences are introduced in the coordinates of the transformed 
points; and it is characteristic of dynamical systems near of C-systems that two 
orbits, initially close to each other, diverge exponentially. It is highly probable 
that the two largest eigenvalues / Xln 1 and 1 h,” J of Tn* will continue to diverge 
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FIG. 2. Same conditions as Fig. 1. (a) Computation in triple precision (20 significant digits). 
(b) Computation in quadruple precision (30 significant digits). 

exponentially for large n, but this cannot be shown with the present method, 
because of the limited precision used. 
These results suggest that the method we have used so far is not suited to the 
problem. 

III. A NEWAPPROACHOFTHEPROBLEM 

Let L, be the M x M matrix of the linear tangential mapping Tn*. Let us call 
(h,“; j = 1, M) its eigenvalues, hln being the largest in absolute value, and 
(Vjll ; j = 1, M), the corresponding eigenvectors. We have 

L,V," = X,"Vj". (7) 
We also suppose that 

I hin l/l A?+“,, I I==- lo* j= 1, M-l (8) 

and that we have computed directly hjn and Vj’l. Our purpose is to compute with 
the precision of at least l 1 ‘v lO-8 the A?+’ and the Vjn+l. As the eigenvectors Vjn 
are independent, we can write 

vy+1 rzz fl aikVkn. (9) 
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We take 2 as the matrix of the linear tangential mapping T* at the point P, = 
Tn(P,,), and introduce the vectors Win+’ by 

w;+1 zc ZVi”. 

The matrix Z is known, but the matrix 

is unknown. 
We have 

A = (ajk,,j = 1, M; k = 1, M) 

(11) L*q- = f ajkXknVkn 
k=l 

Using the “composite mapping theorem,” we derive 

L,,,Fy = ZLJy (12) 

and 

(13) 

L,+IVy+l = f aj,X,nWF+l. 
k=l 

(14) 

But we also have 

If we set 

L,+,v;+l = x”+lvjn+l. (15) 

V;+l z 5 b,,W;+l, 

k=l 
(16) 

we have 

A;,1 5 bik.W;+l = 5 ajkA,nWt+l. (17) 
k=l k=l 

Since the Wz+l are independant vectors, we have the fundamental relationships 

bjk = (hbn/Xy+l) ajk . (18) 

In order to use the Eq. (IQ, we estimate the order of magnitude of the ajrc and 



STOCHASTICITY OF DYNAMICAL SYSTEMS 433 

bj, comparatively to l/c1 . The norms of the eigenvectors (Vjn, VT+‘; j = 1, M) 
are equal to one, hence from Eq. (9) the Uij are small compared to l/e1 . From 
Eq. (lo), the norms of the vectors Wf+’ are such that 

lTrl.2, 6 II W,“+‘II < I TrZI, 

Tr(Z) being of the order of magnitude of the largest eigenvalue and l/TrZ of the 
order of magnitude of the smallest one. Therefore, from the Eq. (16) max 1 bi, 1 
is of the order of 1 Tr 2 1 which is still small compared to l/c1 . 

Using the fact that the eigenvalues of L, differ by a very large amount when we 
start the method, i.e., 

and since 

I ,:+l I > I 4% I 

from the direct calculation, we also have 

I hn l/l ,;+l I < El * 

On the other hand, we have (see Section II) 

X4A = l/h,” and h,n = 1/&n. 

Therefore, for k > j we have 

I At” l/l ,;+l I < 9 , 

and from Eqs. (18) we have the bjk of the order of Ed , since the ajk and the bjk 
are small compared to l/e1 . These bjl, will be taken equal to zero in the following 
algebra. By the same arguments, we take for 

k <j ajk N 0 

Thus we obtain the fundamental relationship 

v;+1 = ij ajkVkn = kl bjkW1. 

We can see immediately that when j = M, we have 
w-1 _ VA4 - aMMVM*. 

(19) 

(20) 
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Hence, 

because 

ahfhf = 1 

11 V”,“II = 11 V,“II = 1. 

We have used the matrix 2, which represents the linear tangential mapping T at 
the point P, , in the canonical basis [(e& i = 1, M]. 

If we now consider the matrix S, whose columns are the eigenvectors Vi”, then 
the matrix 

Z’ = s-12s 

represents T* in the basis [(V,“); i = 1, M], i.e., the columns of Z’ are the vectors 
W:“. 
The elements of Z’ are denoted (zjj ; i = 1, M;,j = 1, M). From (19), we derive 

n+1 _ VA4 - aMMVMn = il bmcW+’ 

= c” ( f h&c) Vln, 
Z=l k=l 

and also 

M-1 

k=l 

= 5 (El h-1,&k) Vzn, 
Z=l k=l 

V ;+l = 5 allV? = IIW,“+l 
14 

(21) 

(22) 

(23) 

(24) 
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If we equal the coefficients of the vectors Vln in Eqs. (23), we obtain M relations 
and M + I unknown quantities: 

We write these quantities as functions of b,, and of the zIj , and we use the following 
normalization relation: 

Since we know all the scalar products Vj” . VklL, we can compute the unknown 
quantities, and obtain first, from (18) the new eigenvalue AZ+’ as a function of the 
old one: 

(25) 

then, from (23) the new eigenvector V:+’ in the new basis [(V,‘“), i = 1, M], as a 
function of the (VLa, I = p, M). We find that VILIPL is a vector whose direction is 
independant of n. 
In the particular case p = M, we have 

We note that we just have to compute the M/2 largest eigenvalues, in absolute 
magnitude. Since the mapping is reciprocal, the others are the inverses of the 
previous ones. 

This new method is an iterative method, which gives the eigenvalues at iteration 
II + 1 as functions of the eigenvalues at iteration IZ. All the computations are 
done by means of matrix operations introducing quantities which are all of the 
same order. And so, the previous numerical difficulties do vanish. 

IV. RESULTS 

A. Systems with three degrees offreedom 

M is now equal to 4. In order to start the new method, we have used the old 
one, described in Section II, in double precision, till the condition 

/ h,n j/l A; 1 ‘v 108 (27) 

is realized; the errors introduced by the two methods are then about the same. 
This is obtained after a certain number m of iterations. Then, we compute the 
eigenvectors (Vj”; j = 1, M), corresponding to the eigenvalues (Xjnz, j = 1, M), 

SW r/3-9* 
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FIG. 3. Upper curve: variation of log,, / A ifl ~ with n. Lower curve: variation of log,, j A,” 1 
with n. Initial conditions: x,, = 2.0, y0 = O., q, = 2.1, t, = 0; parameters: a, = - 1.3, a2 = 
-1.3, b = 0.01, n = l(1) 1000. Computation in double precision, using the new method described 
in section III. 

FIG. 4. Same as Fig. 3 but for n = l(1) 10000. 

and we proceed as described in Section III. Figure 3 shows the results for 1000 
iterations. This is to be compared with the results of Figs. lb, 2a, and 2b. The 
results on Fig. 4 are obtained for 10 000 iterations. We can see the divergence of 
the two largest eigenvalues (the logs are plotted) (in absolute magnitude) of the 
tangential linear mapping of Tn. The two other eigenvalues being the inverses, 
we then really have two dilatating directions and two contracting directions, and 
this is characteristic of a dynamical system similar to a C-system (in the ergodic 
zone). 

We can compare the result on Fig. 4 with the results obtained for the same 
number of iterations using the previous method, which are plotted on Fig. 5, in 
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double precision. Then, the observation of two dilatating directions, was im- 
possible. It is due to the precision problems mentioned in Section II. It is to be 
noted that the new method computes 1000 iterations in about 10 minutes, against 
one hour in precision 4 using the previous method. We can see on Fig. 6 that there 
exists an overlapping zone between the two sets of curves plotted in double 
precision with the two different methods. 

B. Systems with four degrees of freedom 

A4 is now equal to 6. We did not try to use the multiprecision program because 
of the prohibitive computer time which would be necessary, but directly applied 

‘500d 

FIG. 5. Same as Fig. lb, but for n = l(1) 10000. 

1201 ,/qT--- 

n 
400 600 033 1000 

FIG. 6. Same conditions as in Fig. 1 b. We show the overlapping zone when using the two 
different methods; the classical method is used until (27) is satisfied. 
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the new method to a dynamical system with 4 degrees of freedom. This can be done 
quite easily, and we use the following mapping: 

i 

x1 = x0 i- a, sin(x, --:- yO) + b sin(x, + yO t zO $- t, + uO + rO) 
4’1 = x0 + yo 

T (3 
z1 = z. + a2 sin(z, + to) + b sin(s, + yO + z. + to + u. + co) 

6 _ t, = zo + to 

I 

(mod 2~r) (28) 
u1 = u. + us sin(tr, + z.~) 1 b sin(s, + J’~ + z,, + to + u. + r,J 
v1 = 240 + 2’0 

which is a generalisation of the mapping T. 
We could have shown, as we did at the beginning of Section II, that the char- 

acteristic equation of the tangential linear mapping Tt*, is reciprocal. Now, we 
study the behavior of the three largest eigenvalues (in absolute magnitude) of the 
tangential linear mapping T,i”*. 
We use in double precision the classical method until we have 

1 h,n l/I h,n 1 ‘v 108 and / hnl” l/l X,n / N 108, 

and then we proceed as stated in Section IV A. 
Figure 7 shows that we have three dilatating directions, and therefore three 

FIG. 7. Eigenvalues of the six-dimensional mapping (28). Variations of log,, A,” 1, log,, i A,” I, 
log,, 1 A,* I, with n. Initial conditions: x0 = 2.0, y, = o., z. = 2.1, i, = o., u. = 2.0, u. = 0.; 
parameters: a, = -1.3, a2 = -1.3, a3 = -1.3, b = 0.05, it = l(1) 2000. Computation using the 
new method. 

contracting directions, which are characteristic, as seen before, of a dynamical 
system near of a C-system, in the ergodic zone. This method will be a tool for the 
study of the stochasticity of such systems. It can be easily extended to N = 5, 6,.... 
The only limitation is computational time. 
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V. CONCLUSION 

The methods described in this paper are of two kinds: multiprecision and 
special numerical treatment. The first method gives only some indications con- 
cerning the divergence of the second eigenvalue of the linear tangential mapping 
Tn* of Tn. The second method shows numerically that the dynamical system, 
equivalent to the multidimensional mapping T, is near of a C-system in the 
ergodic zone. The fact that this method can be generalized without difficulties to 
systems with a small number N of degrees of freedom (N := 4, 5, 6) is important. 
This method can be used as a numerical tool for the study of the stochasticity of 
such dynamical systems. More generally, this method can be used for any physical 
problem introducing the computation of eigenvalues whose ratios (in absolute 
magnitude and decreasing order) are greater than the inverse of the relative error 
of the computer. 
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